Importance: Coronavirus disease 2019 (COVID-19) has had a severe psychological impact on frontline and second-line medical workers. However, few empirical reports have been published on its impact on occupational therapists. Clarifying the mental health status of occupational therapists is important to maintain care quality and prevent psychological problems in this population.

Objective: To investigate the psychological impact of COVID-19 on Japanese occupational therapists in prefectures with and without severe pandemic-related restrictions and elucidate factors associated with psychological problems such as anxiety, depression, and insomnia.

Design: A cross-sectional online survey using region-stratified two-stage cluster sampling conducted May 28–31, 2020.

Participants: The sample included 371 participants (63.1% women) in the prefectures under specific cautions (i.e., where residents were strictly advised to refrain from outings) and 1,312 in the prefectures without such cautions (61.9% women).

Results: The increase in workload due to the pandemic was significantly related to an increase in anxiety, depression, and insomnia, and an attempt to avoid talking face to face with others was significantly related to an increase in anxiety regardless of area. In prefectures under specific cautions as of May 25, 2020, the provision of sufficient information on COVID-19 by the workplace significantly reduced the risk of insomnia. In other prefectures, the provision of sufficient information significantly reduced the risk of depression.

Conclusions and Relevance: These results demonstrate the severe negative psychological impact of the increase in workload resulting from COVID-19 and suggest the importance of psychological support for occupational therapists, such as the provision of sufficient information by the workplace.

What This Article Adds: This study highlights the importance of providing psychological support for occupational therapists worldwide.

The coronavirus disease 2019 (COVID-19) pandemic has had an unprecedented impact on human lives. This pandemic can be viewed as a global stressor induced by widespread voluntary restraint and social isolation or social distancing and, as previous studies have suggested, it increases the potential risk for mental health problems (Cacioppo & Cacioppo, 2014; Christiansen et al., 2016; Crittenden et al., 2014; Nitschke et al., 2020; Sneed et al., 2012). Several systematic reviews have documented the pandemic’s psychological impact on medical workers (Luo et al., 2020; Pappa et al., 2020; Rajkumar, 2020), and the importance of psychological support and maintaining staff mental health has been emphasized (Chen et al., 2020; Kang, Li, et al., 2020;Kang, Ma, et al., 2020). Thus, medical workers, whether directly involved in diagnosis and treatment or indirectly participating in care management, are at high risk of stress owing to the threat of infection; preparations for infection control, such as masking and sanitizing; and sudden and drastic changes in workload or work content (Lai et al., 2020; Pappa et al., 2020).

Occupational therapists are typically classified as second-line medical workers and do not directly care for people with COVID-19 during the acute phase. However, they have direct contact with their clients during treatment programs, which can increase their infection risk and have a negative impact on their mental health (Ito & Ishioka, 2020). Such negative psychological effects can affect care quality and lead to client dissatisfaction (Escudero-Escudero et al., 2020). To prevent or mitigate negative psychological effects on occupational therapists that can harm care quality, treatment programs and environments with effective infection prevention need to be established. For example, the Italian Association of Physiotherapy suggested suspending all hands-on treatments except in the case of clients who require urgent care and continuity; the goal is to move toward options such as telerehabilitation (Pedersini et al., 2020). Although such an approach can provide effective psychological support for occupational therapists, limited reports have left unclear the extent of the COVID-19 outbreak’s psychological impact on second-line workers (Lu et al., 2020; Yang et al., 2020). Specifically, few empirical reports have been published on the impact of the COVID-19 pandemic on occupational therapists’ mental health.

In Japan, a nationwide state of emergency was declared by the Japanese government and imposed in Japan’s prefectures from April 16 to May 6, 2020. Several prefectures in which the impact of COVID-19 was most severe were designated as being under specific cautions (i.e., where residents were strictly advised refrain from outings): Tokyo, Kanagawa, Chiba, Saitama, and Hokkaido. Japanese residents were requested to stay home as much as possible, and people in areas under specific cautions were in addition strictly prohibited from unnecessary outings; companies also largely restricted business trips.

The aim of this study was to formally investigate the psychological impact of the COVID-19 outbreak on occupational therapists and clarify the relationship between changes in social participation, such as work environment and daily life, and mental health problems, such as anxiety, depression, and insomnia. Moreover, we sought to separately clarify the risk of anxiety, depression, and insomnia in the 5 prefectures under specific cautions and in the other 42 prefectures not under specific cautions. This approach enabled us to highlight how differences in governmental constraints based on variations in pandemic severity affected occupational therapists’ mental health. We were therefore able to provide detailed information on occupational therapists’ psychological state and highlight the approach required to reduce or prevent psychological problems in this population.

Research Protocol

This cross-sectional online survey, which was conducted using region-stratified two-stage cluster sampling, was conducted in Japan from May 28 to May 31, 2020. The data were collected through Google Forms (https://www.google.com/forms/about/). All the respondents were occupational therapists who were members of the Japanese Association of Occupational Therapists; a request for participation was sent to all the registered members on May 28, 2020, via email. The study protocol was approved by the ethical committee of Saitama Prefectural University (Acceptance 20003). All participants provided written informed consent.

Sample

Sampling was based on the number of members and ratio of men to women by prefecture as determined by the 2019 report of the Japanese Association of Occupational Therapists. The sample size was calculated using the following formula (Charan & Biswas, 2013):

where N = the sample size, Z (value of Z score at the 95% confidence level) = 1.96, p = the population size, d (margin of error in estimating the mean) = 0.05, and sample proportion = 0.5. The finite population correction was applied using a population size of 12,761 (62.8% women, 37.2% men) in the five prefectures under specific cautions. The sample size for those five prefectures was 373 (62.8% women, 37.2% men), and the sample size for other 42 prefectures, considering the ratio in the prefectures under specific cautions, was 1,311 (62.0% women, 38.0% men).

Online Questionnaire

Participants were asked to report their sociodemographic characteristics: age, gender, academic background, marital status (married or unmarried), history of psychiatric disorders (yes or no), history of disorders with anxiety or depression symptoms (yes or no), employment type (full time or part time), managerial position (yes or no), and years of service (Table 1).

Table 1.

Sociodemographic Characteristics of the Sample

Characteristic n (%) 
All 47 Prefectures (n = 1,683) 5 Prefectures Under Specific Cautions (n = 371) 42 Prefectures Without Specific Cautions (n = 1,312) 
Age, M (SD35.7 (9.6) 35.4 (9.5) 35.8 (9.6) 
Gender    
 Female 1,046 (62.2) 234 (63.1) 812 (61.9) 
 Male 637 (37.8) 137 (36.9) 500 (38.1) 
Academic background    
 <Bachelor’s 897 (53.3) 172 (46.4) 725 (55.3) 
 ≥Bachelor’s 786 (46.7) 199 (53.6) 587 (44.7) 
Marital status    
 Married 747 (44.4) 174 (46.9) 573 (43.7) 
 Unmarried 936 (55.6) 197 (53.1) 739 (56.3) 
History of mental disorders    
 Yes 28 (1.7) 5 (1.3) 23 (1.8) 
 No 1,655 (98.3) 366 (98.7) 1,289 (98.2) 
Disorders with symptoms of anxiety or depression    
 Yes 51 (3.0) 9 (2.4) 42 (3.2) 
 No 1,632 (97.0) 362 (97.6) 1,270 (96.8) 
Employment type    
 Full time 1,584 (94.1) 345 (93.0) 1,239 (94.4) 
 Part time 99 (5.9) 26 (7.0) 73 (5.6) 
Managerial position    
 Yes 466 (27.7) 105 (28.3) 361 (27.5) 
 No 1,217 (72.3) 266 (71.7) 951 (72.5) 
Service years, M (SD11.9 (8.8) 11.3 (8.4) 12.1 (8.9) 
Characteristic n (%) 
All 47 Prefectures (n = 1,683) 5 Prefectures Under Specific Cautions (n = 371) 42 Prefectures Without Specific Cautions (n = 1,312) 
Age, M (SD35.7 (9.6) 35.4 (9.5) 35.8 (9.6) 
Gender    
 Female 1,046 (62.2) 234 (63.1) 812 (61.9) 
 Male 637 (37.8) 137 (36.9) 500 (38.1) 
Academic background    
 <Bachelor’s 897 (53.3) 172 (46.4) 725 (55.3) 
 ≥Bachelor’s 786 (46.7) 199 (53.6) 587 (44.7) 
Marital status    
 Married 747 (44.4) 174 (46.9) 573 (43.7) 
 Unmarried 936 (55.6) 197 (53.1) 739 (56.3) 
History of mental disorders    
 Yes 28 (1.7) 5 (1.3) 23 (1.8) 
 No 1,655 (98.3) 366 (98.7) 1,289 (98.2) 
Disorders with symptoms of anxiety or depression    
 Yes 51 (3.0) 9 (2.4) 42 (3.2) 
 No 1,632 (97.0) 362 (97.6) 1,270 (96.8) 
Employment type    
 Full time 1,584 (94.1) 345 (93.0) 1,239 (94.4) 
 Part time 99 (5.9) 26 (7.0) 73 (5.6) 
Managerial position    
 Yes 466 (27.7) 105 (28.3) 361 (27.5) 
 No 1,217 (72.3) 266 (71.7) 951 (72.5) 
Service years, M (SD11.9 (8.8) 11.3 (8.4) 12.1 (8.9) 

Note. Prefectures under specific cautions were Tokyo, Kanagawa, Saitama, Chiba, and Hokkaido.

Effects of the Pandemic on Work Life

Participants were asked to respond to the following items concerning work life: acceptance of patients with COVID-19 at their workplace (yes or no), provision of information on COVID-19 by the workplace (7-point rating scale ranging from 1 = never to 7 = sufficient), overtime work (yes or no), short-time work (yes or no), work from home (yes or no), increased workload (yes or no), decreased workload (yes or no), changes in commuting options and time, changes in work content, and free description (fill-in-the-blank question).

Effects of the Pandemic on Daily Life

Participants were asked to respond to the following items concerning daily life: efforts to avoid getting COVID-19 (7-point rating scale ranging from 1 = never to 7 = frequent), efforts to not transmit the virus to others (7-point rating scale), frequency of contact with family (7-point rating scale), frequency of contact with friends (7-point rating scale), changes in daily step count compared with last year (which was evaluated using records automatically logged in health care applications implemented in the participants’ phones), fewer outings (yes or no), attempts to avoid face-to-face conversations (yes or no), attempts to maintain social distancing during conversations (yes or no), increased standard precautions at home (handwashing and gargling; yes or no), increased frequency of mask wearing (yes or no), increased social networking site usage (yes or no), and free description (fill-in-the-blank question).

Validated Questionnaires

On the basis of a previous study (Lai et al., 2020), we focused on symptoms of anxiety, depression, and insomnia. To assess these symptoms, we used the Zung Self-Rating Anxiety Scale (SAS; Zung, 1971), the Zung Self-Rating Depression Scale (SDS; Zung, 1965), and the Japanese version of the Insomnia Severity Index (ISI–J; Morin et al., 2011; Munezawa et al., 2009).

The SAS and SDS each have 20 items rated on a 4-point Likert scale ranging from 1 (a little of the time) to 4 (most of the time). The SAS contains 5 items concerning increased anxiety levels and 15 concerning decreased anxiety levels (Zung, 1971). The SDS includes 10 negative statements such as “I feel down and blue” and 10 reverse-scored positive statements such as “Morning is when I feel the best” (Zung, 1965). The ISI–J contains 7 questions assessing the nature, severity, and impact of insomnia, rated on a 5-point Likert scale ranging from 0 (no problem) to 4 (very severe problem;Bastien et al., 2001). In this study, the cutoffs for detecting the presence of anxiety, depression, and insomnia were ≥40 for the SAS (Dunstan & Scott, 2020), ≥50 for the SDS (Dunstan & Scott, 2019), and ≥10 for the ISI–J (Morin et al., 2011; Munezawa et al., 2009).

Statistical Analysis

Statistical analyses were conducted using jamovi 1.1.9 (https://www.jamovi.org). Fisher’s Exact Test was used to compare the presence of anxiety, depression, and insomnia in prefectures with and without specific cautions. In addition, a binary logistic regression model was developed to estimate the risk of anxiety, depression, and insomnia associated with potential predictors, including changes in work life and daily life, as a result of the pandemic. Independent variables and covariates were entered simultaneously, and potential confounding variables were controlled. The variance inflation factor was used to check for multicollinearity. Raw scores on the SAS, SDS, and ISI–J were not normally distributed and are presented as medians with interquartile ranges (Table 2). The results are presented as odds ratios (ORs) with 95% confidence intervals (CIs), and the level of statistical significance was set at p < .05 (two-tailed).

Table 2.

Questionnaire Results

Survey Item n (%) 
All 47 Prefectures (n = 1,683) 5 Prefectures Under Specific Cautions (n = 371) 42 Prefectures Without Specific Cautions (n = 1,312) 
Cumulative no. of cases of COVID-19 as of the current survey, M (SD727 (1,245) 2,237 (1,841) 300 (453) 
Presence of anxiety, depression, and insomnia (cutoff score)    
 SAS (≥40) 191 (11.3) 37 (10.0) 154 (11.7) 
 SDS (≥50) 178 (10.6) 37 (10.0) 141 (10.7) 
 ISI–J (≥10) 282 (16.8) 54 (14.6) 228 (17.4) 
Median score on each questionnaire (IQR)    
 SAS 33 (29–37) 31 (28–36) 33 (29–37) 
 SDS 40 (34–47) 40 (33–46) 40 (34–47) 
 ISI5 (2–8) 5 (3–8) 5 (2–8) 
Effects of COVID-19 on Work Life 
Accepting patients with COVID-19    
 Yes 280 (16.6) 75 (20.2) 205 (15.6) 
 No 1,403 (83.4) 296 (79.8) 1,107 (84.4) 
Provision of information on COVID-19 by workplace (1 = never, 7 = sufficient   
 5–7 (above average) 1,230 (73.1) 275 (74.1) 955 (72.8) 
 1–3 (below average) 163 (9.7) 35 (9.4) 128 (9.8) 
 4 290 (17.2) 61 (16.4) 229 (17.5) 
Overtime work    
 Yes 57 (3.4) 15 (4.0) 42 (3.2) 
 No 1,626 (96.6) 356 (96.0) 1,270 (96.8) 
Short-time worka    
 Yes 131 (7.8) 38 (10.2) 93 (7.1) 
 No 1,552 (92.2) 333 (89.8) 1,219 (92.9) 
Work from home    
 Yes 97 (5.8) 36 (9.7) 61 (4.6) 
 No 1,586 (94.2) 335 (90.3) 1,251 (95.4) 
Increased workload    
 Yes 480 (28.5) 86 (23.2) 394 (30.0) 
 No 1,203 (71.5) 285 (76.8) 918 (70.0) 
Decreased workload    
 Yes 416 (24.7) 103 (27.8) 313 (23.9) 
 No 1,267 (75.3) 268 (72.2) 999 (76.1) 
Changes in commuting options and time    
 Yes 233 (13.8) 74 (19.9) 159 (12.1) 
 No 1,450 (86.2) 297 (80.1) 1,153 (87.9) 
Changes in work content    
 Yes 88 (5.2) 24 (6.5) 64 (4.9) 
 No 1,595 (94.8) 347 (93.5) 1,248 (95.1) 
Free description (fill-in-the-blank question)    
 Yes 24 (1.4) 6 (1.6) 18 (1.4) 
 No 1,659 (98.6) 365 (98.4) 1,294 (98.6) 
Effects of COVID-19 on Daily Life 
Efforts to avoid getting COVID-19 (1 = never, 7 = frequent 
 5–7 1,654 (98.3) 365 (98.4) 1,289 (98.2) 
 1–3 6 (0.4) 2 (0.5) 4 (0.3) 
 4 23 (1.4) 4 (1.1) 19 (1.4) 
Effort not to transmit the virus to others (1 = never, 7 = frequent   
 5–7 1,644 (97.7) 366 (98.7) 1,278 (97.4) 
 1–3 5 (0.3) 0 (0) 5 (0.4) 
 4 34 (2.0) 5 (1.3) 29 (2.2) 
Frequency of contact with family (1 = never, 7 = frequent   
 5–7 1,195 (71.0) 270 (72.8) 925 (70.5) 
 1–3 188 (11.2) 42 (11.3) 146 (11.1) 
 4 300 (17.8) 59 (15.9) 241 (18.4) 
Frequency of contact with friends (1 = never, 7 = frequent   
 5–7 494 (29.4) 125 (33.7) 369 (28.1) 
 1–3 712 (42.3) 150 (40.4) 562 (42.8) 
 4 477 (28.3) 96 (25.9) 381 (29.0) 
Changes in daily step count    
 Increased 246 (14.6) 42 (11.3) 204 (15.5) 
 Decreased 626 (37.2) 171 (46.1) 455 (34.7) 
 Unchanged 811 (48.2) 158 (42.6) 653 (49.8) 
Fewer outings    
 Yes 1,593 (94.7) 346 (93.3) 1,247 (95.0) 
 No 90 (5.3) 25 (6.7) 65 (5.0) 
Avoidance of face-to-face conversations    
 Yes 519 (30.8) 116 (31.3) 403 (30.7) 
 No 1,164 (69.2) 255 (68.7) 909 (69.3) 
Attempt to maintain social distancing during conversations  
 Yes 751 (44.6) 177 (47.7) 574 (43.8) 
 No 932 (55.4) 194 (52.3) 738 (56.3) 
Increased standard precautions at home    
 Yes 1,477 (87.8) 336 (90.6) 1,141 (87.0) 
 No 206 (12.2) 35 (9.4) 171 (13.0) 
Increased mask wearing    
 Yes 1,591 (94.5) 353 (95.1) 1,238 (94.4) 
 No 92 (5.5) 18 (4.9) 74 (5.6) 
Increased SNS usage    
 Yes 607 (36.1) 158 (42.6) 449 (34.2) 
 No 1,076 (63.9) 213 (57.4) 863 (65.8) 
Free description    
 Yes 49 (2.9) 15 (4.0) 34 (2.6) 
 No 1,634 (97.1) 356 (96.0) 1,278 (97.4) 
Survey Item n (%) 
All 47 Prefectures (n = 1,683) 5 Prefectures Under Specific Cautions (n = 371) 42 Prefectures Without Specific Cautions (n = 1,312) 
Cumulative no. of cases of COVID-19 as of the current survey, M (SD727 (1,245) 2,237 (1,841) 300 (453) 
Presence of anxiety, depression, and insomnia (cutoff score)    
 SAS (≥40) 191 (11.3) 37 (10.0) 154 (11.7) 
 SDS (≥50) 178 (10.6) 37 (10.0) 141 (10.7) 
 ISI–J (≥10) 282 (16.8) 54 (14.6) 228 (17.4) 
Median score on each questionnaire (IQR)    
 SAS 33 (29–37) 31 (28–36) 33 (29–37) 
 SDS 40 (34–47) 40 (33–46) 40 (34–47) 
 ISI5 (2–8) 5 (3–8) 5 (2–8) 
Effects of COVID-19 on Work Life 
Accepting patients with COVID-19    
 Yes 280 (16.6) 75 (20.2) 205 (15.6) 
 No 1,403 (83.4) 296 (79.8) 1,107 (84.4) 
Provision of information on COVID-19 by workplace (1 = never, 7 = sufficient   
 5–7 (above average) 1,230 (73.1) 275 (74.1) 955 (72.8) 
 1–3 (below average) 163 (9.7) 35 (9.4) 128 (9.8) 
 4 290 (17.2) 61 (16.4) 229 (17.5) 
Overtime work    
 Yes 57 (3.4) 15 (4.0) 42 (3.2) 
 No 1,626 (96.6) 356 (96.0) 1,270 (96.8) 
Short-time worka    
 Yes 131 (7.8) 38 (10.2) 93 (7.1) 
 No 1,552 (92.2) 333 (89.8) 1,219 (92.9) 
Work from home    
 Yes 97 (5.8) 36 (9.7) 61 (4.6) 
 No 1,586 (94.2) 335 (90.3) 1,251 (95.4) 
Increased workload    
 Yes 480 (28.5) 86 (23.2) 394 (30.0) 
 No 1,203 (71.5) 285 (76.8) 918 (70.0) 
Decreased workload    
 Yes 416 (24.7) 103 (27.8) 313 (23.9) 
 No 1,267 (75.3) 268 (72.2) 999 (76.1) 
Changes in commuting options and time    
 Yes 233 (13.8) 74 (19.9) 159 (12.1) 
 No 1,450 (86.2) 297 (80.1) 1,153 (87.9) 
Changes in work content    
 Yes 88 (5.2) 24 (6.5) 64 (4.9) 
 No 1,595 (94.8) 347 (93.5) 1,248 (95.1) 
Free description (fill-in-the-blank question)    
 Yes 24 (1.4) 6 (1.6) 18 (1.4) 
 No 1,659 (98.6) 365 (98.4) 1,294 (98.6) 
Effects of COVID-19 on Daily Life 
Efforts to avoid getting COVID-19 (1 = never, 7 = frequent 
 5–7 1,654 (98.3) 365 (98.4) 1,289 (98.2) 
 1–3 6 (0.4) 2 (0.5) 4 (0.3) 
 4 23 (1.4) 4 (1.1) 19 (1.4) 
Effort not to transmit the virus to others (1 = never, 7 = frequent   
 5–7 1,644 (97.7) 366 (98.7) 1,278 (97.4) 
 1–3 5 (0.3) 0 (0) 5 (0.4) 
 4 34 (2.0) 5 (1.3) 29 (2.2) 
Frequency of contact with family (1 = never, 7 = frequent   
 5–7 1,195 (71.0) 270 (72.8) 925 (70.5) 
 1–3 188 (11.2) 42 (11.3) 146 (11.1) 
 4 300 (17.8) 59 (15.9) 241 (18.4) 
Frequency of contact with friends (1 = never, 7 = frequent   
 5–7 494 (29.4) 125 (33.7) 369 (28.1) 
 1–3 712 (42.3) 150 (40.4) 562 (42.8) 
 4 477 (28.3) 96 (25.9) 381 (29.0) 
Changes in daily step count    
 Increased 246 (14.6) 42 (11.3) 204 (15.5) 
 Decreased 626 (37.2) 171 (46.1) 455 (34.7) 
 Unchanged 811 (48.2) 158 (42.6) 653 (49.8) 
Fewer outings    
 Yes 1,593 (94.7) 346 (93.3) 1,247 (95.0) 
 No 90 (5.3) 25 (6.7) 65 (5.0) 
Avoidance of face-to-face conversations    
 Yes 519 (30.8) 116 (31.3) 403 (30.7) 
 No 1,164 (69.2) 255 (68.7) 909 (69.3) 
Attempt to maintain social distancing during conversations  
 Yes 751 (44.6) 177 (47.7) 574 (43.8) 
 No 932 (55.4) 194 (52.3) 738 (56.3) 
Increased standard precautions at home    
 Yes 1,477 (87.8) 336 (90.6) 1,141 (87.0) 
 No 206 (12.2) 35 (9.4) 171 (13.0) 
Increased mask wearing    
 Yes 1,591 (94.5) 353 (95.1) 1,238 (94.4) 
 No 92 (5.5) 18 (4.9) 74 (5.6) 
Increased SNS usage    
 Yes 607 (36.1) 158 (42.6) 449 (34.2) 
 No 1,076 (63.9) 213 (57.4) 863 (65.8) 
Free description    
 Yes 49 (2.9) 15 (4.0) 34 (2.6) 
 No 1,634 (97.1) 356 (96.0) 1,278 (97.4) 

Note. Prefectures under specific cautions were Tokyo, Kanagawa, Saitama, Chiba, and Hokkaido. Percentages may not total 100 because of rounding. COVID-19 = coronavirus disease 2019; IQR = interquartile range; ISI–J = Insomnia Severity Index, Japanese version; SAS = Zung Self-Rating Anxiety Scale; SDS = Zung Self-Rating Depression Scale; SNS = social networking site.

a

Short-time work is defined as being required to work fewer hours.

Sample Characteristics

The total number of respondents was 5,302. Data from respondents with missing data for step counts (n = 881) or inconsistent multiple responses (n = 58) or who were unemployed or currently not working because of hospitalization, maternity leave, or child care leave (n = 8), were excluded. From among the remaining 4,355 respondents, respondents in the 5 prefectures with specific cautions (n = 371) and those in the other 42 prefectures (n = 1,312) were randomly chosen on the basis of sample calculation (see “Sample” section for details). Sample characteristics are shown in Table 1. Forty-nine participants (2.9%) filled in the free description (fill-in-the-blank) section; all of the comments concerned changes in work environment as a result of COVID-19.

Psychological Impact

A total of 371 respondents from the 5 prefectures under specific cautions and 1,312 respondents from the other 42 prefectures showed no significant difference in presence of anxiety, depression, and insomnia (Fisher’s Exact Test): 37 (10.0%) versus 154 (11.7%), p = .404; 37 (10.0%) versus 141 (10.7%), p = .518; and 54 (14.6%) versus 228 (17.4%), p = .209, respectively (see Table 2). Although significant differences were not observed, to investigate the effect of specific cautions, we performed separate binary logistic regression analyses for prefectures with and without specific cautions as of May 25, 2020.

Anxiety

In prefectures under specific cautions, avoiding face-to-face conversations was significantly associated with anxiety risk (OR = 3.34, 95% CI [1.30, 8.60], p = .012), and decreased workload (OR = 0.29, 95% CI [0.09, 0.96], p = .043) was negatively associated with anxiety (Table 3). In prefectures without specific cautions, the variables significantly associated with anxiety risk were insufficient information provision (OR = 2.35, 95% CI [1.25, 4.42], p = .008), increased workload (OR = 1.72, 95% CI [1.12, 2.63], p = .013), increased daily step count (OR = 1.92, 95% CI [1.19, 3.10], p = .008), and avoiding face-to-face conversations (OR = 1.72, 95% CI [1.12, 2.63], p = .013; Table 4).

Table 3.

Binary Logistic Regression Results Concerning Mental Health Decline Among Occupational Therapists From Prefectures Under Specific Cautions

Variables SAS SDS ISI–J 
N OR [95% CI] p n OR [95% CI] p n OR [95% CI] p 
Score ≥40 Score <40 Score ≥50 Score <50 Score ≥10 Score <10 
Effects of COVID-19 on Work Style 
Accepting patients with COVID-19  
 Yes 69 0.541 [0.173, 1.692] .291 71 0.360 [0.097, 1.330] .125 66 0.627 [0.244, 1.610] .333 
 No (Ref.) 31 265 1.000 — 33 263 1.000 — 45 251 1.000 — 
Provision of information about COVID-19 by workplace (1 = never, 7 = sufficient 
 5–7 (above average) 26 249 0.582 [0.194, 1.739] .332 22 253 0.403 [0.144, 1.130] .083 31 244 0.335 [0.142, 0.791] .013* 
 1–3 (below average) 31 0.468 [0.095, 2.300] .350 29 1.050 [0.259, 4.240] .945 27 0.772 [0.227, 2.625] .679 
 4 (Ref.) 54 1.000 — 52 1.000 — 15 46 1.000 — 
Overtime work  
 Yes 14 0.149 [0.013, 0.632] .119 13 0.652 [0.103, 4.090] .648 12 0.729 [0.136, 3.889] .711 
 No (Ref.) 36 320 1.000 — 35 321 1.000 — 51 305 1.000 — 
Short-time worka  
 Yes 36 0.362 [0.066, 1.960] .238 34 1.077 [0.283, 4.090] .913 34 0.454 [0.119, 1.722] .246 
 No (Ref.) 35 298 1.000 — 33 300 1.000 — 50 283 1.000 — 
Work from home  
 Yes 34 0.207 [0.026, 1.628] .134 33 0.956 [0.182, 5.010] .958 30 2.113 [0.579, 7.711] .257 
 No (Ref.) 35 300 1.000 — 34 301 1.000 — 48 287 1.000 — 
Increased workload  
 Yes 12 74 2.365 [0.913, 6.127] .076 12 74 2.746 [1.021, 7.380] .045* 16 70 3.454 [1.397, 8.538] .007* 
 No (Ref.) 25 260 1.000 — 25 260 1.000 — 38 247 1.000 — 
Decreased workload  
 Yes 97 0.292 [0.088, 0.964] .043* 95 0.747 [0.256, 2.180] .593 16 87 1.676 [0.713, 3.939] .236 
 No (Ref.) 31 237 1.000 — 29 239 1.000 — 38 230 1.000 — 
Changes in commuting options and time  
 Yes 10 64 1.622 [0.591, 4.448] .347 10 64 1.328 [0.479, 3.670] .585 13 61 1.008 [0.410, 2.478] .985 
 No (Ref.) 27 270 1.000 — 27 270 1.000 — 41 256 1.000 — 
Changes in work content             
 Yes 20 1.766 [0.436, 7.134] .425 21 1.254 [0.273, 5.760] .771 18 2.965 [0.881, 9.974] .079 
 No (Ref.) 33 314 1.000 — 34 313 1.000 — 48 299 1.000 — 
Free description  
 Yes 6.46 [0.622, 67.012] .118 8.058 [0.875, 74.200] .065 5.56 [0.648, 47.659] .118 
 No (Ref.) 35 330 1.000 — 35 330 1.000 — 52 313 1.000 — 
Effects of the COVID-19 Outbreak on Daily Lifestyle 
Efforts to avoid getting COVID-19 (1 = never, 7 = frequent 
 5–7 36 329 0.115 [0.004, 3.105] .198 36 329 1.282 [0.046, 35.470] .883 0.277 [0.013, 5.730] .407 
 1–3 7.73E-08 [0.000, Inf] .997 9.59E-07 [0.000, Inf] .996 53 312 4.63E-07 [0.000, Inf] .989 
 4 (Ref.) 1.000 — 1.000 — 1.000 — 
Effort not to transmit the virus to others (1 = never, 7 = frequent 
 5–7 37 329 4.87E+07 [0.000, Inf] .994 35 331 0.125 [0.007, 2.330] .163 53 313 1.607 [0.092, 27.868] .744 
 1–3 — — — — — — 
 4 (Ref.) 1.000 — 1.000 — 1.000 — 
Frequency of contact with family (1 = never, 7 = frequent 
 5–7 30 240 1.850 [0.539, 6.340] .328 24 246 0.709 [0.233, 2.150] .543 36 234 0.779 [0.299, 2.030] .610 
 1–3 39 0.800 [0.125, 5.095] .813 36 0.850 [0.196, 3.670] .828 34 1.020 [0.289, 3.596] .975 
 4 (Ref.) 55 1.000 — 52 1.000 — 10 49 1.000 — 
Frequency of contact with friends (1 = never, 7 = frequent 
 5–7 14 111 1.135 [0.393, 3.277] .814 17 108 2.260 [0.691, 7.390] .177 20 105 1.061 [0.425, 2.649] .898 
 1–3 13 137 0.767 [0.264, 2.219] .624 14 136 1.459 [0.438, 4.860] .538 20 130 0.748 [0.304, 1.842] .529 
 4 (Ref.) 10 86 1.000 — 90 1.000 — 14 82 1.000 — 
Changes in daily step count  
 Increased 17 154 1.653 [0.451, 6.057] .448 36 1.717 [0.493, 5.970] .395 10 32 3.632 [1.204, 10.957] .022* 
 Decreased 36 1.243 [0.493, 3.131] .644 20 151 1.467 [0.597, 3.600] .403 29 142 1.557 [0.718, 3.377] .262 
 Unchanged (Ref.) 14 144 1.000 — 11 147 1.000 — 15 143 1.000 — 
Fewer outings  
 Yes 36 310 3.172 [0.186, 53.827] .424 35 311 0.898 [0.138, 5.850] .911 51 295 0.957 [0.176, 5.191] .960 
 No (Ref.) 24 1.000 — 23 1.000 — 22 1.000 — 
Avoiding face-to-face conversations  
 Yes 18 98 3.341 [1.297, 8.600] .012* 15 101 1.851 [0.738, 4.640] .189 17 99 0.763 [0.345, 1.686] .505 
 No (Ref.) 19 236 1.000 — 22 233 1.000 — 37 218 1.000 — 
Attempt to keep social distance when talking to others  
 Yes 20 157 1.050 [0.418, 2.632] .918 18 159 0.804 [0.332, 1.940] .629 24 153 0.780 [0.370, 1.648] .516 
 No (Ref.) 17 177 1.000 — 19 175 1.000  30 164 1.000 — 
Increased standard precautions at home  
 Yes 34 302 2.441 [0.471, 12.642] .288 33 303 1.178 [0.305, 4.550] .812 49 287 1.311 [0.373, 4.602] .672 
 No (Ref.) 32 1.000 — 31 1.000 — 30 1.000 — 
Increased mask wearing  
 Yes 34 319 0.145 [0.020, 1.038] .055 35 318 0.272 [0.039, 1.860] .185 53 300 4.771 [0.445, 51.090] .196 
 No (Ref.) 15 1.000 — 16 1.000 — 17 1.000 — 
Increased SNS usage  
 Yes 20 138 1.547 [0.664, 3.605] .312 23 135 1.955 [0.852, 4.490] .114 32 126 1.858 [0.926, 3.727] .081 
 No (Ref.) 17 196 1.000 — 14 199 1.000 — 22 191 1.000 — 
Free description  
 Yes 15 4.29E-08 [0.000, Inf] .991 15 9.54E-08 [0.000, Inf] .986 14 0.351 [0.039, 3.127] .348 
 No (Ref.) 37 319 1.000 — 37 319 1.000 — 53 303 1.000 — 
Variables SAS SDS ISI–J 
N OR [95% CI] p n OR [95% CI] p n OR [95% CI] p 
Score ≥40 Score <40 Score ≥50 Score <50 Score ≥10 Score <10 
Effects of COVID-19 on Work Style 
Accepting patients with COVID-19  
 Yes 69 0.541 [0.173, 1.692] .291 71 0.360 [0.097, 1.330] .125 66 0.627 [0.244, 1.610] .333 
 No (Ref.) 31 265 1.000 — 33 263 1.000 — 45 251 1.000 — 
Provision of information about COVID-19 by workplace (1 = never, 7 = sufficient 
 5–7 (above average) 26 249 0.582 [0.194, 1.739] .332 22 253 0.403 [0.144, 1.130] .083 31 244 0.335 [0.142, 0.791] .013* 
 1–3 (below average) 31 0.468 [0.095, 2.300] .350 29 1.050 [0.259, 4.240] .945 27 0.772 [0.227, 2.625] .679 
 4 (Ref.) 54 1.000 — 52 1.000 — 15 46 1.000 — 
Overtime work  
 Yes 14 0.149 [0.013, 0.632] .119 13 0.652 [0.103, 4.090] .648 12 0.729 [0.136, 3.889] .711 
 No (Ref.) 36 320 1.000 — 35 321 1.000 — 51 305 1.000 — 
Short-time worka  
 Yes 36 0.362 [0.066, 1.960] .238 34 1.077 [0.283, 4.090] .913 34 0.454 [0.119, 1.722] .246 
 No (Ref.) 35 298 1.000 — 33 300 1.000 — 50 283 1.000 — 
Work from home  
 Yes 34 0.207 [0.026, 1.628] .134 33 0.956 [0.182, 5.010] .958 30 2.113 [0.579, 7.711] .257 
 No (Ref.) 35 300 1.000 — 34 301 1.000 — 48 287 1.000 — 
Increased workload  
 Yes 12 74 2.365 [0.913, 6.127] .076 12 74 2.746 [1.021, 7.380] .045* 16 70 3.454 [1.397, 8.538] .007* 
 No (Ref.) 25 260 1.000 — 25 260 1.000 — 38 247 1.000 — 
Decreased workload  
 Yes 97 0.292 [0.088, 0.964] .043* 95 0.747 [0.256, 2.180] .593 16 87 1.676 [0.713, 3.939] .236 
 No (Ref.) 31 237 1.000 — 29 239 1.000 — 38 230 1.000 — 
Changes in commuting options and time  
 Yes 10 64 1.622 [0.591, 4.448] .347 10 64 1.328 [0.479, 3.670] .585 13 61 1.008 [0.410, 2.478] .985 
 No (Ref.) 27 270 1.000 — 27 270 1.000 — 41 256 1.000 — 
Changes in work content             
 Yes 20 1.766 [0.436, 7.134] .425 21 1.254 [0.273, 5.760] .771 18 2.965 [0.881, 9.974] .079 
 No (Ref.) 33 314 1.000 — 34 313 1.000 — 48 299 1.000 — 
Free description  
 Yes 6.46 [0.622, 67.012] .118 8.058 [0.875, 74.200] .065 5.56 [0.648, 47.659] .118 
 No (Ref.) 35 330 1.000 — 35 330 1.000 — 52 313 1.000 — 
Effects of the COVID-19 Outbreak on Daily Lifestyle 
Efforts to avoid getting COVID-19 (1 = never, 7 = frequent 
 5–7 36 329 0.115 [0.004, 3.105] .198 36 329 1.282 [0.046, 35.470] .883 0.277 [0.013, 5.730] .407 
 1–3 7.73E-08 [0.000, Inf] .997 9.59E-07 [0.000, Inf] .996 53 312 4.63E-07 [0.000, Inf] .989 
 4 (Ref.) 1.000 — 1.000 — 1.000 — 
Effort not to transmit the virus to others (1 = never, 7 = frequent 
 5–7 37 329 4.87E+07 [0.000, Inf] .994 35 331 0.125 [0.007, 2.330] .163 53 313 1.607 [0.092, 27.868] .744 
 1–3 — — — — — — 
 4 (Ref.) 1.000 — 1.000 — 1.000 — 
Frequency of contact with family (1 = never, 7 = frequent 
 5–7 30 240 1.850 [0.539, 6.340] .328 24 246 0.709 [0.233, 2.150] .543 36 234 0.779 [0.299, 2.030] .610 
 1–3 39 0.800 [0.125, 5.095] .813 36 0.850 [0.196, 3.670] .828 34 1.020 [0.289, 3.596] .975 
 4 (Ref.) 55 1.000 — 52 1.000 — 10 49 1.000 — 
Frequency of contact with friends (1 = never, 7 = frequent 
 5–7 14 111 1.135 [0.393, 3.277] .814 17 108 2.260 [0.691, 7.390] .177 20 105 1.061 [0.425, 2.649] .898 
 1–3 13 137 0.767 [0.264, 2.219] .624 14 136 1.459 [0.438, 4.860] .538 20 130 0.748 [0.304, 1.842] .529 
 4 (Ref.) 10 86 1.000 — 90 1.000 — 14 82 1.000 — 
Changes in daily step count  
 Increased 17 154 1.653 [0.451, 6.057] .448 36 1.717 [0.493, 5.970] .395 10 32 3.632 [1.204, 10.957] .022* 
 Decreased 36 1.243 [0.493, 3.131] .644 20 151 1.467 [0.597, 3.600] .403 29 142 1.557 [0.718, 3.377] .262 
 Unchanged (Ref.) 14 144 1.000 — 11 147 1.000 — 15 143 1.000 — 
Fewer outings  
 Yes 36 310 3.172 [0.186, 53.827] .424 35 311 0.898 [0.138, 5.850] .911 51 295 0.957 [0.176, 5.191] .960 
 No (Ref.) 24 1.000 — 23 1.000 — 22 1.000 — 
Avoiding face-to-face conversations  
 Yes 18 98 3.341 [1.297, 8.600] .012* 15 101 1.851 [0.738, 4.640] .189 17 99 0.763 [0.345, 1.686] .505 
 No (Ref.) 19 236 1.000 — 22 233 1.000 — 37 218 1.000 — 
Attempt to keep social distance when talking to others  
 Yes 20 157 1.050 [0.418, 2.632] .918 18 159 0.804 [0.332, 1.940] .629 24 153 0.780 [0.370, 1.648] .516 
 No (Ref.) 17 177 1.000 — 19 175 1.000  30 164 1.000 — 
Increased standard precautions at home  
 Yes 34 302 2.441 [0.471, 12.642] .288 33 303 1.178 [0.305, 4.550] .812 49 287 1.311 [0.373, 4.602] .672 
 No (Ref.) 32 1.000 — 31 1.000 — 30 1.000 — 
Increased mask wearing  
 Yes 34 319 0.145 [0.020, 1.038] .055 35 318 0.272 [0.039, 1.860] .185 53 300 4.771 [0.445, 51.090] .196 
 No (Ref.) 15 1.000 — 16 1.000 — 17 1.000 — 
Increased SNS usage  
 Yes 20 138 1.547 [0.664, 3.605] .312 23 135 1.955 [0.852, 4.490] .114 32 126 1.858 [0.926, 3.727] .081 
 No (Ref.) 17 196 1.000 — 14 199 1.000 — 22 191 1.000 — 
Free description  
 Yes 15 4.29E-08 [0.000, Inf] .991 15 9.54E-08 [0.000, Inf] .986 14 0.351 [0.039, 3.127] .348 
 No (Ref.) 37 319 1.000 — 37 319 1.000 — 53 303 1.000 — 

Note. N = 371. In this model, independent variables and covariates were entered simultaneously, and potential confounding variables were controlled. Covariates were standardized age, gender dummy (female = 1, male = 0), academic background level dummy (<bachelor’s = 1, ≥bachelor’s = 0), marital status dummy (unmarried = 1, married = 0), psychiatric disorder dummy (no = 1, yes = 0), disorders with symptoms of anxiety or depression dummy (no = 1, yes = 0), employment type dummy (part time = 1, full time = 0), managerial position (yes = 1, no = 0), standardized service years, and standardized cumulative number of cases as of the current survey. Dashes indicate data that are not applicable. COVID-19 = coronavirus disease 2019; CI = confidence interval; Inf = infinity; ISI–J = Insomnia Severity Index, Japanese version; OR = odds ratio; Ref. = reference; SAS = Zung Self-Rating Anxiety Scale; SDS = Zung Self-Rating Depression Scale; SNS = social networking site.

a

Short-time work is defined as being required to work fewer hours.

*

p < .05.

Table 4.

Binary Logistic Regression Results Concerning Mental Health Decline Among Occupational Therapists From Prefectures Without Specific Cautions

Variables SAS SDS ISI–J 
N OR [95% CI] p n OR [95% CI] N OR [95% CI] p 
Score ≥40 Score <40 Score ≥50 Score <50 Score ≥10 Score <10 
Effects of COVID-19 on Work Style 
Acceptance of patients with COVID-19  
 Yes 17 188 0.622 [0.354, 1.092] .099 21 184 0.893 [0.517, 1.542] .685 27 178 0.710 [0.448, 1.123] .143 
 No (Ref.) 137 970 1.000 — 120 987 1.000 — 201 906 1.000 — 
Information provision about COVID-19 by workplace (1 = never, 7 = sufficient 
 5–7 (above average) 99 856 0.985 [0.605, 1.605] .954 85 870 0.612 [0.381, 0.982] .042* 154 801 0.780 [0.525, 1.158] .218 
 1–3 (below average) 29 99 2.352 [1.252, 4.418] .008* 21 107 0.949 [0.484, 1.860] .879 29 99 1.069 [0.604, 1.893] .818 
 4 (Ref.) 26 203 1.000 — 35 194 1.000 — 45 184 1.000 — 
Overtime work             
 Yes 33 1.593 [0.671, 3.779] .291 33 1.694 [0.664, 4.323] .269 15 27 2.002 [0.978, 4.095] .057 
 No (Ref.) 145 1,125 1.000 — 132 1,138 1.000 — 213 1,057 1.000 — 
Short-time work             
 Yes 86 0.888 [0.380, 2.077] .785 86 1.087 [0.438, 2.693] .857 12 81 0.941 [0.478, 1.849] .859 
 No (Ref.) 147 1,072 1.000 — 134 1,085 1.000 — 216 1,003 1.000 — 
Work from home             
 Yes 57 0.594 [0.197, 1.788] .355 60 0.177 [0.023, 1.367] .097 53 0.785 [0.336, 1.832] .576 
 No (Ref.) 150 1,101 1.000 — 140 1,111 1.000 — 220 1,031 1.000 — 
Increased workload  
 Yes 63 331 1.716 [1.121, 2.627] .013* 63 331 2.213 [1.418, 3.455] <.001* 105 289 2.617 [1.816, 3.770] <.001* 
 No (Ref.) 91 827 1.000 — 78 840 1.000 — 123 795 1.000 — 
Decreased workload  
 Yes 28 285 0.943 [0.574, 1.551] .819 19 294 0.632 [0.354, 1.129] .121 49 264 1.454 [0.962, 2.197] .075 
 No (Ref.) 126 873 1.000 — 122 877 1.000 — 179 820 1.000 — 
Changes in commuting options and time  
 Yes 15 144 0.963 [0.523, 1.774] .905 19 140 1.376 [0.755, 2.507] .297 25 134 0.976 [0.593, 1.605] .924 
 No (Ref.) 139 1,014 1.000 — 122 1,031 1.000  203 950 1.000 — 
Changes in work content             
 Yes 58 0.787 [0.314, 1.971] .609 59 0.846 [0.310, 2.307] .745 57 0.700 [0.298, 1.643] .413 
 No (Ref.) 148 1,100 1.000 — 136 1,112 1.000 — 221 1,027 1.000 — 
Free description             
 Yes 14 2.141 [0.599, 7.653] .241 16 1.848 [0.363, 9.399] .459 15 1.009 [0.261, 3.891] .989 
 No (Ref.) 150 1,144 1.000 — 139 1,155 1.000 — 225 1,069 1.000 — 
Effects of the COVID-19 Outbreak on Daily Lifestyle 
Efforts to avoid getting COVID-19 (1 = never, 7 = frequent 
 5–7 152 1,137 0.862 [0.11, 6.735] .887 136 1,153 0.024 [0.001, 0.349] .006* 14 0.385 [0.083, 1.771] .22 
 1–3 9.36E-07 [0.000, Inf] .972 3.99E-08 [0.000, Inf] .985 223 1,066 7.61E-07 [0.000, Inf] .973 
 4 (Ref.) 17 1.000 — 14 1.000 — 1.000 — 
Effort not to transmit the virus to others (1 = never, 7 = frequent 
 5–7 151 1,127 2.547 [0.364, 17.789] .346 139 1,139 44.824 [2.195, 915.340] .013* 221 1,057 1.378 [0.365, 5.191] .636 
 1–3 12.463 [0.282, 549.600] .192 4.20E-05 [0.000, Inf] .99 3.282 [0.128, 83.952] .472 
 4 (Ref.) 27 1.000 — 27 1.000 — 23 1.000 — 
Frequency of contact with family (1 = never, 7 = frequent 
 5–7 104 821 1.338 [0.815, 2.197] .249 79 846 0.862 [0.528, 1.407] .553 152 773 1.025 [0.682, 1.541] .904 
 1–3 25 121 1.685 [0.877, 3.239] .117 31 115 1.575 [0.840, 2.956] .157 35 111 1.410 [0.809, 2.456] .225 
 4 (Ref.) 25 216 1.000 — 31 210 1.000 — 41 200 1.000 — 
Frequency of contact with friends (1 = never, 7 = frequent 
 5–7 37 332 0.838 [0.503, 1.395] .497 27 342 0.733 [0.41, 1.311] .296 72 297 1.320 [0.872, 1.999] .189 
 1–3 79 483 1.332 [0.854, 2.078] .205 81 481 1.861 [1.149, 3.013] .011* 101 461 1.167 [0.794, 1.714] .432 
 4 (Ref.) 38 343 1.000  33 348 1.000 — 55 326 1.000 — 
Changes in daily step count  
 Increased 57 398 1.915 [1.185, 3.096] .008* 26 178 1.027 [0.596, 1.769] .923 45 159 1.485 [0.975, 2.259] .065 
 Decreased 36 168 1.521 [0.999, 2.314] .05 46 409 0.946 [0.607, 1.474] .808 85 370 1.374 [0.967, 1.952] .076 
 Unchanged (Ref.) 61 592 1.000 — 69 584 1.000 — 98 555 1.000 — 
Fewer outings  
 Yes 142 1,105 0.506 [0.247, 1.037] .063 132 1,115 0.469 [0.205, 1.075] .074 215 1,032 0.767 [0.390, 1.508] .442 
 No (Ref.) 12 53 1.000 — 56 1.000 — 13 52 1.000 — 
Avoiding face-to-face conversations  
 Yes 60 343 1.725 [1.119, 2.659] .013* 62 341 2.254 [1.418, 3.581] <.001* 81 322 1.229 [0.853, 1.771] .268 
 No (Ref.) 94 815 1.000 — 79 830 1.000 — 147 762 1.000 — 
Attempt to keep social distance when talking to others  
 Yes 69 505 0.867 [0.568, 1.323] .509 62 512 0.799 [0.505, 1.265] .339 106 468 1.037 [0.729, 1.475] .838 
 No (Ref.) 85 653 1.000 — 79 659 1.000 — 122 616 1.000 — 
Increased standard precautions at home  
 Yes 135 1,006 1.221 [0.665, 2.243] .518 126 1,015 1.816 [0.898, 3.671] .097 205 936 1.521 [0.881, 2.626] .132 
 No (Ref.) 19 152 1.000 — 15 156 1.000 — 23 148 1.000 — 
Increased mask wearing  
 Yes 143 1,095 0.645 [0.287, 1.449] .289 131 1,107 0.506 [0.205, 1.244] .138 216 1,022 0.867 [0.410, 1.834] .709 
 No (Ref.) 11 63 1.000 — 10 64 1.000 — 12 62 1.000 — 
Increased SNS usage  
 Yes 58 391 1.053 [0.716, 1.549] .792 58 391 1.251 [0.828, 1.890] .287 85 364 1.007 [0.726, 1.398] .964 
 No (Ref.) 96 767 1.000 — 83 780 1.000 — 143 720 1.000 — 
Free description  
 Yes 28 1.471 [0.523, 4.138] .464 32 0.484 [0.098, 2.396] .374 27 1.42 [0.560, 3.596] .459 
 No (Ref.) 148 1,130 1.000 — 139 1,139 1.000 — 221 1,057 1.000 — 
Variables SAS SDS ISI–J 
N OR [95% CI] p n OR [95% CI] N OR [95% CI] p 
Score ≥40 Score <40 Score ≥50 Score <50 Score ≥10 Score <10 
Effects of COVID-19 on Work Style 
Acceptance of patients with COVID-19  
 Yes 17 188 0.622 [0.354, 1.092] .099 21 184 0.893 [0.517, 1.542] .685 27 178 0.710 [0.448, 1.123] .143 
 No (Ref.) 137 970 1.000 — 120 987 1.000 — 201 906 1.000 — 
Information provision about COVID-19 by workplace (1 = never, 7 = sufficient 
 5–7 (above average) 99 856 0.985 [0.605, 1.605] .954 85 870 0.612 [0.381, 0.982] .042* 154 801 0.780 [0.525, 1.158] .218 
 1–3 (below average) 29 99 2.352 [1.252, 4.418] .008* 21 107 0.949 [0.484, 1.860] .879 29 99 1.069 [0.604, 1.893] .818 
 4 (Ref.) 26 203 1.000 — 35 194 1.000 — 45 184 1.000 — 
Overtime work             
 Yes 33 1.593 [0.671, 3.779] .291 33 1.694 [0.664, 4.323] .269 15 27 2.002 [0.978, 4.095] .057 
 No (Ref.) 145 1,125 1.000 — 132 1,138 1.000 — 213 1,057 1.000 — 
Short-time work             
 Yes 86 0.888 [0.380, 2.077] .785 86 1.087 [0.438, 2.693] .857 12 81 0.941 [0.478, 1.849] .859 
 No (Ref.) 147 1,072 1.000 — 134 1,085 1.000 — 216 1,003 1.000 — 
Work from home             
 Yes 57 0.594 [0.197, 1.788] .355 60 0.177 [0.023, 1.367] .097 53 0.785 [0.336, 1.832] .576 
 No (Ref.) 150 1,101 1.000 — 140 1,111 1.000 — 220 1,031 1.000 — 
Increased workload  
 Yes 63 331 1.716 [1.121, 2.627] .013* 63 331 2.213 [1.418, 3.455] <.001* 105 289 2.617 [1.816, 3.770] <.001* 
 No (Ref.) 91 827 1.000 — 78 840 1.000 — 123 795 1.000 — 
Decreased workload  
 Yes 28 285 0.943 [0.574, 1.551] .819 19 294 0.632 [0.354, 1.129] .121 49 264 1.454 [0.962, 2.197] .075 
 No (Ref.) 126 873 1.000 — 122 877 1.000 — 179 820 1.000 — 
Changes in commuting options and time  
 Yes 15 144 0.963 [0.523, 1.774] .905 19 140 1.376 [0.755, 2.507] .297 25 134 0.976 [0.593, 1.605] .924 
 No (Ref.) 139 1,014 1.000 — 122 1,031 1.000  203 950 1.000 — 
Changes in work content             
 Yes 58 0.787 [0.314, 1.971] .609 59 0.846 [0.310, 2.307] .745 57 0.700 [0.298, 1.643] .413 
 No (Ref.) 148 1,100 1.000 — 136 1,112 1.000 — 221 1,027 1.000 — 
Free description             
 Yes 14 2.141 [0.599, 7.653] .241 16 1.848 [0.363, 9.399] .459 15 1.009 [0.261, 3.891] .989 
 No (Ref.) 150 1,144 1.000 — 139 1,155 1.000 — 225 1,069 1.000 — 
Effects of the COVID-19 Outbreak on Daily Lifestyle 
Efforts to avoid getting COVID-19 (1 = never, 7 = frequent 
 5–7 152 1,137 0.862 [0.11, 6.735] .887 136 1,153 0.024 [0.001, 0.349] .006* 14 0.385 [0.083, 1.771] .22 
 1–3 9.36E-07 [0.000, Inf] .972 3.99E-08 [0.000, Inf] .985 223 1,066 7.61E-07 [0.000, Inf] .973 
 4 (Ref.) 17 1.000 — 14 1.000 — 1.000 — 
Effort not to transmit the virus to others (1 = never, 7 = frequent 
 5–7 151 1,127 2.547 [0.364, 17.789] .346 139 1,139 44.824 [2.195, 915.340] .013* 221 1,057 1.378 [0.365, 5.191] .636 
 1–3 12.463 [0.282, 549.600] .192 4.20E-05 [0.000, Inf] .99 3.282 [0.128, 83.952] .472 
 4 (Ref.) 27 1.000 — 27 1.000 — 23 1.000 — 
Frequency of contact with family (1 = never, 7 = frequent 
 5–7 104 821 1.338 [0.815, 2.197] .249 79 846 0.862 [0.528, 1.407] .553 152 773 1.025 [0.682, 1.541] .904 
 1–3 25 121 1.685 [0.877, 3.239] .117 31 115 1.575 [0.840, 2.956] .157 35 111 1.410 [0.809, 2.456] .225 
 4 (Ref.) 25 216 1.000 — 31 210 1.000 — 41 200 1.000 — 
Frequency of contact with friends (1 = never, 7 = frequent 
 5–7 37 332 0.838 [0.503, 1.395] .497 27 342 0.733 [0.41, 1.311] .296 72 297 1.320 [0.872, 1.999] .189 
 1–3 79 483 1.332 [0.854, 2.078] .205 81 481 1.861 [1.149, 3.013] .011* 101 461 1.167 [0.794, 1.714] .432 
 4 (Ref.) 38 343 1.000  33 348 1.000 — 55 326 1.000 — 
Changes in daily step count  
 Increased 57 398 1.915 [1.185, 3.096] .008* 26 178 1.027 [0.596, 1.769] .923 45 159 1.485 [0.975, 2.259] .065 
 Decreased 36 168 1.521 [0.999, 2.314] .05 46 409 0.946 [0.607, 1.474] .808 85 370 1.374 [0.967, 1.952] .076 
 Unchanged (Ref.) 61 592 1.000 — 69 584 1.000 — 98 555 1.000 — 
Fewer outings  
 Yes 142 1,105 0.506 [0.247, 1.037] .063 132 1,115 0.469 [0.205, 1.075] .074 215 1,032 0.767 [0.390, 1.508] .442 
 No (Ref.) 12 53 1.000 — 56 1.000 — 13 52 1.000 — 
Avoiding face-to-face conversations  
 Yes 60 343 1.725 [1.119, 2.659] .013* 62 341 2.254 [1.418, 3.581] <.001* 81 322 1.229 [0.853, 1.771] .268 
 No (Ref.) 94 815 1.000 — 79 830 1.000 — 147 762 1.000 — 
Attempt to keep social distance when talking to others  
 Yes 69 505 0.867 [0.568, 1.323] .509 62 512 0.799 [0.505, 1.265] .339 106 468 1.037 [0.729, 1.475] .838 
 No (Ref.) 85 653 1.000 — 79 659 1.000 — 122 616 1.000 — 
Increased standard precautions at home  
 Yes 135 1,006 1.221 [0.665, 2.243] .518 126 1,015 1.816 [0.898, 3.671] .097 205 936 1.521 [0.881, 2.626] .132 
 No (Ref.) 19 152 1.000 — 15 156 1.000 — 23 148 1.000 — 
Increased mask wearing  
 Yes 143 1,095 0.645 [0.287, 1.449] .289 131 1,107 0.506 [0.205, 1.244] .138 216 1,022 0.867 [0.410, 1.834] .709 
 No (Ref.) 11 63 1.000 — 10 64 1.000 — 12 62 1.000 — 
Increased SNS usage  
 Yes 58 391 1.053 [0.716, 1.549] .792 58 391 1.251 [0.828, 1.890] .287 85 364 1.007 [0.726, 1.398] .964 
 No (Ref.) 96 767 1.000 — 83 780 1.000 — 143 720 1.000 — 
Free description  
 Yes 28 1.471 [0.523, 4.138] .464 32 0.484 [0.098, 2.396] .374 27 1.42 [0.560, 3.596] .459 
 No (Ref.) 148 1,130 1.000 — 139 1,139 1.000 — 221 1,057 1.000 — 

Note. N = 1,312. In this model, independent variables and covariates were entered simultaneously, and potential confounding variables were controlled. Covariates were standardized age, gender dummy (female = 1, male = 0), academic background level dummy (<bachelor’s = 1, ≥bachelor’s = 0), marital status dummy (unmarried = 1, married = 0), psychiatric disorder dummy (no = 1, yes = 0), disorders with symptoms of anxiety or depression dummy (no = 1, yes = 0), employment type dummy (part time = 1, full time = 0), managerial position (yes = 1, no = 0), standardized service years, and standardized cumulative number of cases as of the current survey. Dashes indicate data that are not applicable. COVID-19 = coronavirus disease 2019; CI = confidence interval; Inf = infinity; ISI–J = Insomnia Severity Index, Japanese version; OR = odds ratio; Ref. = reference; SAS = Zung Self-Rating Anxiety Scale; SDS = Zung Self-Rating Depression Scale; SNS = social networking site.

*

p < .05.

Depression

In prefectures under specific cautions, only increased workload was significantly associated with depression risk (OR = 2.75, 95% CI [1.02, 7.38], p = .045; see Table 3). In prefectures without specific cautions, the variables significantly associated with depression risk were increased workload (OR = 2.21, 95% CI [1.42, 3.46], p < .001), efforts not to transmit the virus to others (OR = 44.82, 95% CI [2.20, 915.34], p = .013), decreased contact with friends (OR = 1.86, 95% CI [1.15, 3.01], p = .011), and avoiding face-to-face conversations (OR = 2.25, 95% CI [1.42, 3.58], p < .001; see Table 4). Sufficient information provision (OR = 0.61, 95% CI [0.38, 0.98], p = .042) and efforts to avoid getting COVID-19 (OR = 0.02, 95% CI [0.001, 0.35], p = .006) were negatively associated with depression risk.

Insomnia

In prefectures under specific cautions, increased workload (OR = 3.45, 95% CI [1.40, 8.54], p = .007) and increased daily step count (OR = 3.63, 95% CI [1.20, 10.96], p = .022) were significantly associated with insomnia risk (see Table 3). Sufficient information provision about COVID-19 from the workplace (OR = 0.34, 95% CI [0.14, 0.79], p = .013) was negatively associated with insomnia. Increased workload was also significantly associated with insomnia (OR = 2.62, 95% CI [1.82, 3.77], p < .001) in prefectures without specific cautions (see Table 4).

This is the first report on mental health problems and risk factors faced by Japanese occupational therapists during the COVID-19 outbreak based on region-stratified two-stage cluster sampling. Overall, 11.3%, 10.9%, and 16.8% of Japanese occupational therapists exhibited symptoms of anxiety, depression, and insomnia, respectively. The psychological impact of the COVID-19 outbreak between the 5 prefectures under specific cautions and the other 42 prefectures did not significantly differ (anxiety, 10.0% and 11.7%; depression, 10.0% and 10.7%; and insomnia, 14.6% and 17.4%, respectively). The prevalence of anxiety and depression among occupational therapists was generally lower than among frontline medical workers (Luo et al., 2020), supporting previous findings that such variations might be due to the differences in exposure to infection between occupational therapists and frontline medical workers (Lai et al., 2020). Notably, the prevalence of anxiety and depression among occupational therapists in Japan was lower than among South Korean physical therapists (anxiety, 32.3%, and depression, 18.5%; Yang et al., 2020). The different prevalence rates of psychological problems among second-line medical staff might vary across countries and care systems, as do those among frontline medical workers (Luo et al., 2020). To elaborate on the factors behind such differences, international data sharing and collaboration among national occupational therapy associations must be leveraged.

Here, we provide the first evidence of the relationship between the psychological impact of COVID-19 and social participation, including work state and daily life, among Japanese occupational therapists in regions with differing pandemic severity levels. Our findings indicate that the attempt to avoid face-to-face conversations is associated with anxiety, regardless of area. These findings are consistent with those of an Italian survey wherein the link between perceived social isolation and perceived COVID-19 impact on health status was mediated by perceived distress (Cerami et al., 2020). Overall, it is plausible that the attempt to avoid face-to-face conversation may lead to psychological distress, increasing the risk of anxiety.

Intriguingly, increased workload was significantly related to increased anxiety, depression, and insomnia, regardless of area. These findings are in accord with the results of a meta-analysis on burnout among mental health professionals (O’Connor et al., 2018) that suggested that role clarity, professional autonomy, a sense of fair treatment, and access to regular clinical supervision may support workers. Although direct evidence is needed, these factors, in addition to reduced workload and enhanced communication, can be significant in preventing burnout among occupational therapists (Escudero-Escudero et al., 2020). In our study, in prefectures under specific cautions, sufficient information from the workplace significantly reduced insomnia risk, whereas in other areas it significantly reduced depression risk. These findings support recent studies on the relationship between the psychological impact of an infectious outbreak and the amount of information provided by one’s workplace (Matsuishi et al., 2012; Sin & Huak, 2004). Information provision by the workplace may indirectly support occupational therapists’ mental health by contributing to role clarity and a sense of fair treatment.

Infection prevention efforts were effective in reducing depression risk in prefectures without specific cautions. This supports the results of a previous study that demonstrated the link between the frequency of preventive measures, such as avoiding sharing utensils, handwashing, and wearing masks, and anxiety and depression levels in the general population (Wang et al., 2020). In contrast, infection prevention efforts were not significantly related to depression in the prefectures under specific cautions. Although Japanese occupational therapists generally pay considerable attention to infection prevention and show a certain ceiling effect, these differences can still be explained by the ostensible difference in the rate of increase in standard precautions at home, such as handwashing and gargling (areas with specific cautions, 90.6%; areas without specific cautions, 87.0%). Nevertheless, regardless of area, intensive efforts to accomplish substantial improvement in infection prevention practices are needed because they can protect and support not only clients but also therapists and can reduce the risk of mental health problems.

In this survey, we did not use a control group of frontline workers, such as physicians and nurses, or second-line workers, such as physical therapists and speech therapists, because our primary focus was a detailed exploration of the impact of COVID-19 on the mental health of occupational therapists in Japan. Therefore, we were unable to determine whether these results were unique to occupational therapists. Moreover, this study was cross-sectional; therefore, we are unable to make causal inferences.

We should also note that this study was a one-shot survey and could not capture the dynamic relationship between the mental health of occupational therapists and the pandemic. A longitudinal follow-up survey is needed to explain how COVID-19 has affected the occupational therapy community and how occupational therapists are adjusting to the current challenging situation.

Internal comparisons are also needed to infer how differences between health care systems are related to occupational therapists’ mental health problems. We hope that international data sharing and collaboration with national professional associations will be leveraged to support occupational therapists worldwide.

The findings from this study have the following implications for occupational therapy practice:

  • Excessive workload and attempts to minimize face-to-face conversations should be avoided.

  • Institutional support for occupational therapists, such as facilitating information updates and sufficient communication, is essential to mitigate mental health problems.

We investigated the psychological impact of COVID-19 on Japanese occupational therapists by specifically focusing on anxiety, depression, and insomnia and their relation to work life and daily life. Increased workload and an attempt to avoid face-to-face conversations were associated with an increased risk of psychological problems. Sufficient information from the workplace and efforts to prevent transmission of COVID-19 were associated with decreased risk of psychological problems. These results highlight the urgent need for institutional support for occupational therapists, to facilitate information updates and sufficient communication, and further personal infection prevention efforts by occupational therapists themselves. By doing so, clients can receive high-quality care even in challenging situations.

We greatly appreciate the Japanese Association of Occupational Therapists for their support in data collection and the occupational therapists for their participation. This study was partly supported by Saitama Prefectural University Grant 200070.

Bastien
,
C. H.
,
Vallières
,
A.
, &
Morin
,
C. M.
(
2001
).
Validation of the Insomnia Severity Index as an outcome measure for insomnia research
.
Sleep Medicine
,
2
,
297
307
.
Cacioppo
,
J. T.
, &
Cacioppo
,
S.
(
2014
).
Social relationships and health: The toxic effects of perceived social isolation
.
Social and Personality Psychology Compass
,
8
,
58
72
.
Cerami
,
C.
,
Santi
,
G. C.
,
Galandra
,
C.
,
Dodich
,
A.
,
Cappa
,
S. F.
,
Vecchi
,
T.
, &
Crespi
,
C.
(
2020
).
Covid-19 outbreak in Italy: Are we ready for the psychosocial and the economic crisis? Baseline findings from the PsyCovid Study
.
Frontiers in Psychiatry
,
11
,
556
Charan
,
J.
, &
Biswas
,
T.
(
2013
).
How to calculate sample size for different study designs in medical research
.
Indian Journal of Psychological Medicine
,
35
,
121
126
.
Chen
,
Q.
,
Liang
,
M.
,
Li
,
Y.
,
Guo
,
J.
,
Fei
,
D.
,
Wang
,
L.
, . . .
Zhang
,
Z.
(
2020
).
Mental health care for medical staff in China during the COVID-19 outbreak
.
Lancet Psychiatry
,
7
,
e15
e16
.
Christiansen
,
J.
,
Larsen
,
F. B.
, &
Lasgaard
,
M.
(
2016
).
Do stress, health behavior, and sleep mediate the association between loneliness and adverse health conditions among older people?
Social Science and Medicine
,
152
,
80
86
.
Crittenden
,
C. N.
,
Pressman
,
S. D.
,
Cohen
,
S.
,
Janicki-Deverts
,
D.
,
Smith
,
B. W.
, &
Seeman
,
T. E.
(
2014
).
Social integration and pulmonary function in the elderly
.
Health Psychology
,
33
,
535
543
.
Dunstan
,
D. A.
, &
Scott
,
N.
(
2019
).
Clarification of the cut-off score for Zung’s Self-Rating Depression Scale
.
BMC Psychiatry
,
19
,
177
.
Dunstan
,
D. A.
, &
Scott
,
N.
(
2020
).
Norms for Zung’s Self-Rating Anxiety Scale
.
BMC Psychiatry
,
20
,
90
.
Escudero-Escudero
,
A. C.
,
Segura-Fragoso
,
A.
, &
Cantero-Garlito
,
P. A.
(
2020
).
Burnout syndrome in occupational therapists in Spain: Prevalence and risk factors
.
International Journal of Environmental Research and Public Health
,
17
,
3164
.
Ito
,
A.
, &
Ishioka
,
T.
(
2020
).
Exploring the impact of the COVID-19 pandemic on the mental health of rehabilitation therapists
.
Journal of Rehabilitation Neurosciences
,
20
,
19
23
.
Japanese Association of Occupational Therapists
. (
2019
). The Journal of Japanese Association of Occupational Therapists (JJAOT), No. 90. https://www.jaot.or.jp/files/page/about/pdf/kaiintoukeisiryou2018.pdf
Kang
,
L.
,
Li
,
Y.
,
Hu
,
S.
,
Chen
,
M.
,
Yang
,
C.
,
Yang
,
B. X.
, . . .
Liu
,
Z.
(
2020
).
The mental health of medical workers in Wuhan, China dealing with the 2019 novel coronavirus
.
Lancet Psychiatry
,
7
,
e14
.
Kang
,
L.
,
Ma
,
S.
,
Chen
,
M.
,
Yang
,
J.
,
Wang
,
Y.
,
Li
,
R.
, . . .
Liu
,
Z.
(
2020
).
Impact on mental health and perceptions of psychological care among medical and nursing staff in Wuhan during the 2019 novel coronavirus disease outbreak: A cross-sectional study
.
Brain, Behavior, and Immunity
,
87
,
11
17
.
Lai
,
J.
,
Ma
,
S.
,
Wang
,
Y.
,
Cai
,
Z.
,
Hu
,
J.
,
Wei
,
N.
, . . .
Hu
,
S.
(
2020
).
Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019
.
JAMA Network Open
,
3
,
e203976
.
Lu
,
W.
,
Wang
,
H.
,
Lin
,
Y.
, &
Li
,
L.
(
2020
).
Psychological status of medical workforce during the COVID-19 pandemic: A cross-sectional study
.
Psychiatry Research
,
288
,
112936
.
Luo
,
M.
,
Guo
,
L.
,
Yu
,
M.
,
Jiang
,
W.
, &
Wang
,
H.
(
2020
).
The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public—A systematic review and meta-analysis
.
Psychiatry Research
,
291
,
113190
.
Matsuishi
,
K.
,
Kawazoe
,
A.
,
Imai
,
H.
,
Ito
,
A.
,
Mouri
,
K.
,
Kitamura
,
N.
, . . .
Mita
,
T.
(
2012
).
Psychological impact of the pandemic (H1N1) 2009 on general hospital workers in Kobe
.
Psychiatry and Clinical Neurosciences
,
66
,
353
360
.
Morin
,
C. M.
,
Belleville
,
G.
,
Bélanger
,
L.
, &
Ivers
,
H.
(
2011
).
The Insomnia Severity Index: Psychometric indicators to detect insomnia cases and evaluate treatment response
.
Sleep
,
34
,
601
608
.
Munezawa
,
T.
,
Morin
,
C.
,
Inoue
,
Y.
, &
Nedate
,
K.
(
2009
).
Development of the Japanese version of the Insomnia Severity Index (ISI–J)
.
Japanese Journal of Psychiatric Treatment
,
24
,
219
225
.
Nitschke
,
J. P.
,
Forbes
,
P. A. G.
,
Ali
,
N.
,
Cutler
,
J.
,
Apps
,
M. A. J.
,
Lockwood
,
P. L.
, &
Lamm
,
C.
(
2020
).
Resilience during uncertainty: Greater social connectedness during COVID-19 lockdown is associated with reduced distress and fatigue
.
British Journal of Health Psychology
. Advance online publication.
O’Connor
,
K.
,
Muller Neff
,
D.
, &
Pitman
,
S.
(
2018
).
Burnout in mental health professionals: A systematic review and meta-analysis of prevalence and determinants
.
European Psychiatry
,
53
,
74
99
.
Pappa
,
S.
,
Ntella
,
V.
,
Giannakas
,
T.
,
Giannakoulis
,
V. G.
,
Papoutsi
,
E.
, &
Katsaounou
,
P.
(
2020
).
Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis
.
Brain, Behavior, and Immunity
,
88
,
901
907
.
Pedersini
,
P.
,
Corbellini
,
C.
, &
Villafañe
,
J. H.
(
2020
).
Italian physical therapists’ response to the novel COVID-19 emergency
.
Physical Therapy
,
100
,
1049
1051
.
Rajkumar
,
R. P.
(
2020
).
COVID-19 and mental health: A review of the existing literature
.
Asian Journal of Psychiatry
,
52
,
102066
.
Sin
,
S. S.
, &
Huak
,
C. Y.
(
2004
).
Psychological impact of the SARS outbreak on a Singaporean rehabilitation department
.
International Journal of Therapy and Rehabilitation
,
11
,
417
424
.
Sneed
,
R. S.
,
Cohen
,
S.
,
Turner
,
R. B.
, &
Doyle
,
W. J.
(
2012
).
Parenthood and host resistance to the common cold
.
Psychosomatic Medicine
,
74
,
567
573
.
Wang
,
C.
,
Pan
,
R.
,
Wan
,
X.
,
Tan
,
Y.
,
Xu
,
L.
,
Ho
,
C. S.
, &
Ho
,
R. C.
(
2020
).
Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China
.
International Journal of Environmental Research and Public Health
,
17
,
1729
.
Yang
,
S.
,
Kwak
,
S. G.
,
Ko
,
E. J.
, &
Chang
,
M. C.
(
2020
).
The mental health burden of the COVID-19 pandemic on physical therapists
.
International Journal of Environmental Research and Public Health
,
17
,
3723
.
Zung
,
W. W.
(
1965
).
A self-rating depression scale
.
Archives of General Psychiatry
,
12
,
63
70
.
Zung
,
W. W.
(
1971
).
A rating instrument for anxiety disorders
.
Psychosomatics
,
12
,
371
379
.